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Project Overview

Research Question: Can lignocellulosic
biorefineries co-process organic waste in
rural communities at comparable or lower
costs and environmental impacts relative to
a conventional standalone design?

Objective: Conceptualize, design and

assess the economic and environmental

Berformance of multi-input, multi-output
iorefineries

Goals:

— Design a set of cost-competitive biorefineries
capable of taking in lignocellulosic biomass
and organic waste, producing multiple value-
added products

— Build and demonstrate integrated siting, TEA,
and LCA models to simulate these designs and
explore tradeoffs
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1 - Approach

Task 1: Multi-Input Multi-Output Biorefinery Design

Task 2: Preliminary Biorefinery Simulation

Task 3: Lab-Scale Biogas Conversion to Bioproducts

Task 4: Multi-Input Multi-Output Biorefinery Simulation

Task 5: Launch-Scale Biogas Conversion to Bioproducts

Task 6: Life-Cycle Energy Use, Greenhouse Gas, & Water Use Inventory
Task 7: Life-Cycle Air Pollutant Inventory & Human Health Damages
Task 8: Sensitivity Analysis for Core Biorefinery Designs

Task 9: Completion of Biorefinery Analysis Web Tool

Go/No-
Year 1 Go #1 Year 2

Year 3
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1 - Approach

Challenges

» Determining tipping fees/costs & local
availability for organic waste inputs

« Quantifying air quality impacts of our

BP 1 Go/No-Go: Complete biorefinery designs scenarios & business-as-usual baseline

isopentenol, bio-CNG, & PHA

Task 1: Design ~ pjX— X

— for 4 configurations including ethanol, * Deploying results in web tool that is usable

BP 2: Report bioproduct yields on key nutrients at

> launch scale in biogas & estimate minimum yield

required for profitability
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2 - Progress and Outcomes

Budget Period 1 Milestones

Quarter | Milestone Description I(\.)ne:.rlc.:s d biorefi desi il
1 1.1.1 Identify >3 key feedstock contaminants, report concentrations in plimize |c?re Inery designs wi
>10 feedstock types. produce a suite of fuels and products
2 3.1.1 Report bench-scale PHA yields on key nutrients (nitrogen). that, compared to an identical portfolio
of conventional alternatives, will:
3 3.2.1 Report bench-scale SCP yields on key nutrients (nitrogen).  Reduce GHG emissions by > 70%

* Reduce fossil energy use by > 50%

Budget Period 2 Milestones . .
£ * Reduce air pollutant emissions (on

Quarter | Milestone Description _
5 4.1.1 Develop MSP, mass/energy balances for >3 AD feedstock blends. monetized local human health
6 5.2.1 Report launch-scale bioproduct yields on key nutrients (nitrogen). damage basis) by > 20%
7 6.1.1 Estimate fossil energy demand for >5 designs.

Budget Period 3 Milestones

Quarter | Milestone Description Complete
9 7.1.1 Life-cycle air pollutant inventory for >5 designs.
10 8.2.1 Uncertainty analysis for cost, GHG, and air pollutants.
11 9.1.1 Demonstrate web tool for at least 2 biorefinery designs.
On schedule
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2 - Progress and Outcomes
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2 - Progress and Outcomes
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2 - Progress and Outcomes

Representative availability around biorefinery
in U.S. corn belt:

Hog manure: 4,600 wet metric ton/day
Cattle manure: 1,100 wet metric ton/day
Food waste: 400 wet metric ton/day

 —— T S———)
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— — -
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e

Biomass Data Source:
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Year: | 2017 v

Note: red circles that appear at finer

Resource Types:
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Screenshot: https://biositing.jbei.org/national
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Source: Moore et al. In Preparation
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Manure availability is a major source of
uncertainty. A fraction is collectable, and some
is beneficially used as fertilizer.
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2 - Progress and Outcomes

EBMUD

« Explored practicality of co-digesting mixed waste by partnering with EBMUD (8 years, 31 waste streams)
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2 - Progress and Outcomes
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Co-digestion:
Hog manure: 4,600 wet metric ton/day
Cattle manure: 1,100 wet metric ton/day

Food waste: 400 wet metric ton/day Source: Wang et al

Error bars represent extreme
optimistic & pessimistic scenarios

I PHB/SCP production
BioCNG production

B Manure delivered cost

B Utilities

I Onsite energy generation
Wastewater treatment

B Recovery & separation

I Hydrolysis & fermentation
Pretreatment
Feedstock supply & handling

Electricity credit
' Food waste tipping revenue
B BioCNG revenue
I PHB/SCP revenue

® Minimum ethanol selling price
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2 - Progress and Outcomes
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2 - Progress and Outcomes
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2 - Progress and Outcomes
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2 - Progress and Outcomes
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Key takeaways:

« Co-digesting manure and food waste yields
substantial GHG benefits

« PHB production can mitigate plastic waste, but

these do not translate into greater GHG benefits

compared to CNG
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3 - Impact

Long-term analysis informed
by data & practical
experience from deployment

Training next TEA/LCA

Biorefineries to alleviate
leaders

nutrient pollution & methane

-~ emissions
Yan became TEA ¢ *
expert @ Shell :
Hydrogen
Melissa was
waste-to-energy
engineer before 'j ey
PhD, passion for B .
TEA/LCA i

Jackson
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Summary

Goal: Conceptualize, design, and asses the economic and environmental performance of
multi-input, multi-output biorefineries that can convert locally-produced lignocellulosic
biomass, manure, and other wet organic waste into liquid fuels, platform chemicals, and
high-value products.

Approach: Use an LCA and TEA framework to design and evaluate multi- input, multi-output
biorefineries. Integrate empirical data on the production of polyhydroxyalkanoate (PHA) and
single cell protein (SCP) from raw biogas, in addition to empirical data on pretreatment and
bioconversion from previous work.

Progress: Final biorefinery designs completed, cost, GHG, and energy results published for
PHA and SCP production with varying co-digestion configurations. Water and air pollutant
results generated. Web tool operational.

Potential Impact: Improved environmental quality and jobs in rural communities, > 70% GHG
reduction, > 50% fossil energy reduction, and > 20% air pollution health damage reduction
relative to base case.

Future Work: Publish water and GHG results, post PHA and SCP scenarios on web tool.

Berkeley

UNIVERSITY OF CALIFORNIA



Quad Chart Overview

Timeline
« Start date: July 1, 2020
« End date: June 30, 2023

Project Partners
« Mango Materials

*Only fill out if applicable.

Project Goal

Conceptualize, design, and asses the
economic and environmental performance of
multi-input, multi-output biorefineries that
can convert locally-produced lignocellulosic
biomass, manure, and other wet organic waste
into liquid fuels, platform chemicals, and
high-value products.

End of Project Milestone

Provide a set of optimized biorefinery designs
that take in biomass and wet organic waste to
produce a suite of fuels and products, valuable
results on the economic and environmental
impacts of these multi-input multi-output
biorefineries, as well as a set of important
modeling tools for researchers and
stakeholders interested in evaluating their own
technologies in in the context of their
communities.

Funding Mechanism

BETO FY19 Multi-Topic FOA, AOI 10: Reducing
Water, Energy, and Emissions in Bioenergy

DE-FOA-0002029

Serkele

UNIVERSITY OF CALIFORNIA
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Response to Reviewer Comments

« Recommendation to address potential overlap with other projects

in BE'

—Upc

finc

'O portfolio

ate: Engaged with labs across the BETO portfolio to share
ings and coordinate on parameters through Roads to Removal

report. Offering findings as potential resource for Billion Ton Update
* Question regarding usability of web tools

—Update: Engaged in regular user trainings. Main users appear to be:
investors conducting due diligence, researchers doing preliminary
TEA/LCA
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Publications, Patents, Presentations,
Awards, and Commercialization

Invited Talks

"Biomanufacturing to Address Near-Term Climate Goals", Invited Panel Discussion, National Academies Biomanufacturing Workshop, Washington, DC,
March 3, 2023. [virtual]

"Challenges in Biomanufacturing Contributing to a Circular Bioeconomy", Invited Panel Discussion, National Academies Biomanufacturing Workshop,
Washington, DC, October 24, 2022. [virtual]

"Waste-Based Materials for Carbon Sequestration & a Circular Economy", Invited Talk, EBI-Shell Net Zero Emission Materials Workshop, University of
California, Berkeley, October 13, 2022.

“Designing the bioeconomy for deep decarbonization", Keynote Talk, Annual Green Chemistry & Engineering Conference, June 3, 2022. [virtual]

“Overcoming the Engineering and Environmental Challenges of Achieving a More Circular Economy”, Invited Talk, CUWP Seminar Series, University of
Wisconsin-Madison, April 14, 2022. [virtual visit]

“Overcoming the Engineering and Environmental Challenges of Achieving a More Circular Economy”, Invited Talk, Ezra's Systems Roundtable Seminar,
Cornell University, February 4, 2022. [virtual due to COVID]

“Weighing Life-Cycle Climate and Health Tradeoffs in the Push Toward Zero Waste”, Invited Talk, EEE Research Seminar, Purdue University, January 18,
2022. [virtual]

“Converting Wet, Stinky Waste into Usable Energy”, Guest Lecture for UC Berkeley E93, October 29, 2021.
“Circular Plastics and the Environment”, Invited Talk, IEEE Silicon Valley/Bay Area Sustainability (SVS) Webinar, October 13, 2021. [virtual due to COVID]

“Designing the Bioeconomy for Deep Decarbonization: Opportunities and impacts for the agricultural sector”, Invited Conference Presentation, Society for
Industrial Microbiology and Biotechnology Annual Meeting, Austin, TX, August 9, 2021. [virtual]

“Opportunities and impacts for the agricultural sector”, Invited Plenary Talk, Designing the Bioeconomy for Deep Decarbonization, DOE Multi-Lab

Workshop, April 30, 2021. B€fk€1€y

UNIVERSITY OF CALIFORNIA
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Publications, Patents, Presentations,
Awards, and Commercialization

Publications
Wang, Y., Baral, N.R., Yang, M. and Scown, C.D., 2023. Co-Processing Agricultural Residues and Wet Organic Waste Can Produce Lower-Cost Carbon-
Negative Fuels and Bioplastics. Environmental Science & Technology. DOI: 10.1021/acs.est.2c06674

Nordahl, S.L., Preble, C.V., Kirchstetter, T.W. and Scown, C.D., 2023. Greenhouse Gas and Air Pollutant Emissions from Composting. £Environmental Science
& Technology. DOI: 10.1021/acs.est.2c05846

Scown, C.D., 2022. Prospects for carbon-negative biomanufacturing. 7rends in Biotechnology. DOI: 10.1016/j.tibtech.2022.09.004

Wang, Y., Huntington, T. and Scown, C.D., 2021. Tree-based automated machine learning to predict biogas production for anaerobic co-digestion of
organic waste. ACS Sustainable Chemistry & Engineering, 9(38), pp.12990-13000. DOI: 10.1021/acssuschemeng.1c04612

Orner, K.D., Smith, S., Nordahl, S., Chakrabarti, A., Breunig, H., Scown, C.D., Leverenz, H., Nelson, K.L. and Horvath, A., 2022. Environmental and Economic
Impacts of Managing Nutrients in Digestate Derived from Sewage Sludge and High-Strength Organic Waste. Environmental Science & Technology, 56(23),
pp.17256-17265. DOI: 10.1021/acs.est.2c04020

National Academies of Sciences, Engineering, and Medicine, 2022. Current Methods for Life Cycle Analyses of Low-Carbon Transportation Fuels in the
United States.

Awards B k 1
ACS Sustainable Chemistry & Engineering Lectureship, 2022 er e €y

UNIVERSITY OF CALIFORNIA
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B

1 - Approach

. Biorefinery scenarios designed & simulated in SuperPro

Designer to generate mass/energy balances & estimate
costs

Biogas yield & composition simulated using promising
feedstock types & real-world AD data from EBMUD

PHA & SCP yields @ bench scale tested

Biorefinery designs optimized based on early modeled &
empirical results

Gas fermentation scaled up at launch facility, data
collected at larger scale

Task 1: Design ~ P X~ *//

6.

Q.

Life-cycle assessment developed for optimized
biorefinery designs for energy, GHG, water
Sensitivity analysis to explore technical & market
risks

Air pollutant & health damages estimated using
integrated assessment model

Web-based modeling tools deployed for use in
broader research & industry community

5
Task 6. Ener 50 0 0 o[to-10 6 -45| |15 » 2
L gy’ 0 45 0 0 || o7 10-67 -8 02| — il

0 0 324 0 | op.45 09 -85 |30 aedt 8 B |

09 .34 -02 1.0 45 ~ B I =

GHG, Water
Task 2: Simulate B—ay
U Task 7: Air

Task 3: Test K L Quality & Health

P e

AN
Task 4: Optimize Task 8: Sensitivity ' /\
CIrKke €y

TaSk 5: Scale Task O Share _% UNIVERSITY OF CALIFORNIA
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2 - Progress and Outcomes
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